Acta Cryst. (1976). B32, 1620

Bond-valence summation for borates: errata. By GABRIELLE DONNAY and J. D. H. DONNAY, Department of Geological Sciences, McGill University, P.O. Box 6070, Station A, Montreal, Quebec, Canada H3C 3G1

(Received 28 January 1976; accepted 28 January 1976)

In Table 1 of Donnay & Donnay [Acta Cryst. (1973), B29, 1417–1425], (O–H) should read (B–O); on p. 1424, $L \leq L$ should read $L \geq L$.

The following errata should be corrected in Donnay & Donnay (1973): p. 1418, Table 1: in the title and first column heading, instead of (O–H), read (B–O); p. 1424, 1st column, line 14 from bottom of page: instead of $L \le \overline{L}$ read $L \ge \overline{L}$.

Reference

DONNAY, G. & DONNAY, J. D. H. (1973). Acta Cryst. B29, 1417–1425.

Acta Cryst. (1976). B32, 1620

New compounds of Yb_3Fe_4O_{10} and Yb_4Fe_5O_{13}. By NOBORU KIMIZUKA, KATSUO KATO, ISAMU SHINDO and ISAO KAWADA, National Institute for Researches in Inorganic Materials, Sakura-mura, Niihari-gun, Ibaraki 300-31, Japan and TAKASHI KATSURA, Faculty of Science, Tokyo Institute of Technology, Ookayama, Meguroku, Tokyo 152, Japan

(Received 2 October 1975; accepted 7 February 1976)

New compounds of $Yb_3Fe_4O_{10}$ [(YbFeO_3)_3FeO] and $Yb_4Fe_5O_{13}$ [(YbFeO_3)_4FeO] have been found in the YbFeO_3-FeO pseudo-binary system and their crystallographic data determined. The structural relations of $Yb_3Fe_4O_{10}$ and $Yb_4Fe_5O_{13}$ to the previously determined YbFe₂O₄ and Yb₂Fe₃O₇ are presented.

Introduction

In the pseudo-binary system of $(A/B)FeO_3$ -FeO, the $(AFeO_3)FeO$ and the $(BFeO_3)_2FeO$ types of compound (A = Y, Ho, Er, Tm, Yb and Lu; B = Yb and Lu) have so far been synthesized under controlled oxygen partial pressures at 1200°C (Kimizuka, Takenaka, Sasada & Katsura, 1975*a*, *b*; Tannières, Evrard & Aubry, 1974) and crystal structure analyses have been performed on YbFe₂O₄ (Kato, Kawada, Kimizuka & Katsura, 1975) and Yb₂Fe₃O₇ (Kato, Kawada, Kimizuka, Shindo & Katsura, 1976). The crystal structure of (Yb,Eu)Fe₂O₄ has been independently determined by Malaman, Evrard, Tannières & Aubry (1975). The present paper reports the existence of the new compounds of Yb₃Fe₄O₁₀ and Yb₄Fe₅O₁₃ along with their crystallographic data and their structural relations to the compounds of YbFe₂O₄ and Yb₂Fe₃O₇.

Sample preparation

99.99 % purity grade Yb₂O₃ (Shinetsu Chemical Co.) and guaranteed reagent grade Fe₂O₃ (3/4 in mole ratio) were thoroughly mixed in an agate mortar under ethyl alcohol and heated at 1200 °C in air for two days. The mixture was then placed in a crucible ($10 \times 10 \text{ mm } \varphi$) of 20% Rh–Pt alloy and heated at 1650 ± 1 °C in a CO₂ gas (99.99%) atmosphere using a vertical Mo-wire wound furnace. Reaction time was 30 min and the sample was rapidly cooled to ice temperature.

X-ray powder diffraction by a counter diffractometer (Mn-filtered Fe $K\alpha$ radiation and Si standard) revealed that

the polycrystalline material thus obtained was a mixture of $Yb_2Fe_3O_7$, $Yb_3Fe_2O_{10}$ and $Yb_4Fe_5O_{13}$. The crystals of the former two phases were grown large enough to be examined by single-crystal methods.

Table 1. Spacings and relative intensities of Yb₃Fe₄O₁₀

	h	k	l	d_{obs} (Å)	d_{calc} (Å)	I_{obs}
1	0	0	3	19.8	20.3	1
2	0	0	6	10.07	10.13	15
3	0	0	9	6.726	6.754	80
4	0	0	12	5.055	5.066	80
5	0	0	15	4.054	4.053	30
6	0	0	18	3.359	3.377	5
7	0	0	21	2.8929	2.8948	100
8	1	0	10	2.7013	2.7063	20
9	1	0	13)	2.5377	2.5383	10
10	0	0	24∫	2.3311	2.5329	10
11	0	0	27	2.2548	2.2515	2
12	Ī	0	20	2.1411	2.1432	2 3 5 3
13	1	0	22	2 ·0419	2.0394	5
14	1	0	25	1.8933	1.8945	3
15	ī	0	26	1.8474	1.8493	10
16	1	1	0	1.7452	1.7450	20
17	1	0	31	1.6430	1.6451	3
18	ī	0	32	1.6086	1.6084	
19	1	0	34	1.5407	1.5388	3 3
20	$\overline{2}$	0	1	1.5110	1.5107	5
21	1	1	21	1.4963	1.4955	10
22	$\overline{2}$	0	10	1.4659	1.4666	8
23	0	0	42	1.4467	1.4474	30
24	ī	0	38	1.4141	1.4139	3